283 lines
12 KiB
Python
283 lines
12 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
from ultralytics.utils import LOGGER, ops
|
|
from ultralytics.utils.checks import check_requirements
|
|
from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou
|
|
from ultralytics.utils.plotting import output_to_target, plot_images
|
|
|
|
|
|
class PoseValidator(DetectionValidator):
|
|
"""
|
|
A class extending the DetectionValidator class for validation based on a pose model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.models.yolo.pose import PoseValidator
|
|
|
|
args = dict(model="yolov8n-pose.pt", data="coco8-pose.yaml")
|
|
validator = PoseValidator(args=args)
|
|
validator()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
|
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
|
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
|
self.sigma = None
|
|
self.kpt_shape = None
|
|
self.args.task = "pose"
|
|
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
|
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
|
|
LOGGER.warning(
|
|
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
|
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
|
)
|
|
|
|
def preprocess(self, batch):
|
|
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
|
|
batch = super().preprocess(batch)
|
|
batch["keypoints"] = batch["keypoints"].to(self.device).float()
|
|
return batch
|
|
|
|
def get_desc(self):
|
|
"""Returns description of evaluation metrics in string format."""
|
|
return ("%22s" + "%11s" * 10) % (
|
|
"Class",
|
|
"Images",
|
|
"Instances",
|
|
"Box(P",
|
|
"R",
|
|
"mAP50",
|
|
"mAP50-95)",
|
|
"Pose(P",
|
|
"R",
|
|
"mAP50",
|
|
"mAP50-95)",
|
|
)
|
|
|
|
def postprocess(self, preds):
|
|
"""Apply non-maximum suppression and return detections with high confidence scores."""
|
|
return ops.non_max_suppression(
|
|
preds,
|
|
self.args.conf,
|
|
self.args.iou,
|
|
labels=self.lb,
|
|
multi_label=True,
|
|
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
nc=self.nc,
|
|
)
|
|
|
|
def init_metrics(self, model):
|
|
"""Initiate pose estimation metrics for YOLO model."""
|
|
super().init_metrics(model)
|
|
self.kpt_shape = self.data["kpt_shape"]
|
|
is_pose = self.kpt_shape == [17, 3]
|
|
nkpt = self.kpt_shape[0]
|
|
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
|
|
self.stats = dict(tp_p=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])
|
|
|
|
def _prepare_batch(self, si, batch):
|
|
"""Prepares a batch for processing by converting keypoints to float and moving to device."""
|
|
pbatch = super()._prepare_batch(si, batch)
|
|
kpts = batch["keypoints"][batch["batch_idx"] == si]
|
|
h, w = pbatch["imgsz"]
|
|
kpts = kpts.clone()
|
|
kpts[..., 0] *= w
|
|
kpts[..., 1] *= h
|
|
kpts = ops.scale_coords(pbatch["imgsz"], kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
|
|
pbatch["kpts"] = kpts
|
|
return pbatch
|
|
|
|
def _prepare_pred(self, pred, pbatch):
|
|
"""Prepares and scales keypoints in a batch for pose processing."""
|
|
predn = super()._prepare_pred(pred, pbatch)
|
|
nk = pbatch["kpts"].shape[1]
|
|
pred_kpts = predn[:, 6:].view(len(predn), nk, -1)
|
|
ops.scale_coords(pbatch["imgsz"], pred_kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
|
|
return predn, pred_kpts
|
|
|
|
def update_metrics(self, preds, batch):
|
|
"""Metrics."""
|
|
for si, pred in enumerate(preds):
|
|
self.seen += 1
|
|
npr = len(pred)
|
|
stat = dict(
|
|
conf=torch.zeros(0, device=self.device),
|
|
pred_cls=torch.zeros(0, device=self.device),
|
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
|
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
|
)
|
|
pbatch = self._prepare_batch(si, batch)
|
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
|
nl = len(cls)
|
|
stat["target_cls"] = cls
|
|
stat["target_img"] = cls.unique()
|
|
if npr == 0:
|
|
if nl:
|
|
for k in self.stats.keys():
|
|
self.stats[k].append(stat[k])
|
|
if self.args.plots:
|
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
|
continue
|
|
|
|
# Predictions
|
|
if self.args.single_cls:
|
|
pred[:, 5] = 0
|
|
predn, pred_kpts = self._prepare_pred(pred, pbatch)
|
|
stat["conf"] = predn[:, 4]
|
|
stat["pred_cls"] = predn[:, 5]
|
|
|
|
# Evaluate
|
|
if nl:
|
|
stat["tp"] = self._process_batch(predn, bbox, cls)
|
|
stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"])
|
|
if self.args.plots:
|
|
self.confusion_matrix.process_batch(predn, bbox, cls)
|
|
|
|
for k in self.stats.keys():
|
|
self.stats[k].append(stat[k])
|
|
|
|
# Save
|
|
if self.args.save_json:
|
|
self.pred_to_json(predn, batch["im_file"][si])
|
|
if self.args.save_txt:
|
|
self.save_one_txt(
|
|
predn,
|
|
pred_kpts,
|
|
self.args.save_conf,
|
|
pbatch["ori_shape"],
|
|
self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt',
|
|
)
|
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_kpts=None, gt_kpts=None):
|
|
"""
|
|
Return correct prediction matrix by computing Intersection over Union (IoU) between detections and ground truth.
|
|
|
|
Args:
|
|
detections (torch.Tensor): Tensor with shape (N, 6) representing detection boxes and scores, where each
|
|
detection is of the format (x1, y1, x2, y2, conf, class).
|
|
gt_bboxes (torch.Tensor): Tensor with shape (M, 4) representing ground truth bounding boxes, where each
|
|
box is of the format (x1, y1, x2, y2).
|
|
gt_cls (torch.Tensor): Tensor with shape (M,) representing ground truth class indices.
|
|
pred_kpts (torch.Tensor | None): Optional tensor with shape (N, 51) representing predicted keypoints, where
|
|
51 corresponds to 17 keypoints each having 3 values.
|
|
gt_kpts (torch.Tensor | None): Optional tensor with shape (N, 51) representing ground truth keypoints.
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor with shape (N, 10) representing the correct prediction matrix for 10 IoU levels,
|
|
where N is the number of detections.
|
|
|
|
Example:
|
|
```python
|
|
detections = torch.rand(100, 6) # 100 predictions: (x1, y1, x2, y2, conf, class)
|
|
gt_bboxes = torch.rand(50, 4) # 50 ground truth boxes: (x1, y1, x2, y2)
|
|
gt_cls = torch.randint(0, 2, (50,)) # 50 ground truth class indices
|
|
pred_kpts = torch.rand(100, 51) # 100 predicted keypoints
|
|
gt_kpts = torch.rand(50, 51) # 50 ground truth keypoints
|
|
correct_preds = _process_batch(detections, gt_bboxes, gt_cls, pred_kpts, gt_kpts)
|
|
```
|
|
|
|
Note:
|
|
`0.53` scale factor used in area computation is referenced from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384.
|
|
"""
|
|
if pred_kpts is not None and gt_kpts is not None:
|
|
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
|
|
area = ops.xyxy2xywh(gt_bboxes)[:, 2:].prod(1) * 0.53
|
|
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)
|
|
else: # boxes
|
|
iou = box_iou(gt_bboxes, detections[:, :4])
|
|
|
|
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
|
|
|
def plot_val_samples(self, batch, ni):
|
|
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
|
|
plot_images(
|
|
batch["img"],
|
|
batch["batch_idx"],
|
|
batch["cls"].squeeze(-1),
|
|
batch["bboxes"],
|
|
kpts=batch["keypoints"],
|
|
paths=batch["im_file"],
|
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
|
names=self.names,
|
|
on_plot=self.on_plot,
|
|
)
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
"""Plots predictions for YOLO model."""
|
|
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
|
|
plot_images(
|
|
batch["img"],
|
|
*output_to_target(preds, max_det=self.args.max_det),
|
|
kpts=pred_kpts,
|
|
paths=batch["im_file"],
|
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
|
names=self.names,
|
|
on_plot=self.on_plot,
|
|
) # pred
|
|
|
|
def save_one_txt(self, predn, pred_kpts, save_conf, shape, file):
|
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
|
from ultralytics.engine.results import Results
|
|
|
|
Results(
|
|
np.zeros((shape[0], shape[1]), dtype=np.uint8),
|
|
path=None,
|
|
names=self.names,
|
|
boxes=predn[:, :6],
|
|
keypoints=pred_kpts,
|
|
).save_txt(file, save_conf=save_conf)
|
|
|
|
def pred_to_json(self, predn, filename):
|
|
"""Converts YOLO predictions to COCO JSON format."""
|
|
stem = Path(filename).stem
|
|
image_id = int(stem) if stem.isnumeric() else stem
|
|
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
for p, b in zip(predn.tolist(), box.tolist()):
|
|
self.jdict.append(
|
|
{
|
|
"image_id": image_id,
|
|
"category_id": self.class_map[int(p[5])],
|
|
"bbox": [round(x, 3) for x in b],
|
|
"keypoints": p[6:],
|
|
"score": round(p[4], 5),
|
|
}
|
|
)
|
|
|
|
def eval_json(self, stats):
|
|
"""Evaluates object detection model using COCO JSON format."""
|
|
if self.args.save_json and self.is_coco and len(self.jdict):
|
|
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations
|
|
pred_json = self.save_dir / "predictions.json" # predictions
|
|
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
|
check_requirements("pycocotools>=2.0.6")
|
|
from pycocotools.coco import COCO # noqa
|
|
from pycocotools.cocoeval import COCOeval # noqa
|
|
|
|
for x in anno_json, pred_json:
|
|
assert x.is_file(), f"{x} file not found"
|
|
anno = COCO(str(anno_json)) # init annotations api
|
|
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
|
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "keypoints")]):
|
|
if self.is_coco:
|
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
|
eval.evaluate()
|
|
eval.accumulate()
|
|
eval.summarize()
|
|
idx = i * 4 + 2
|
|
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
|
|
:2
|
|
] # update mAP50-95 and mAP50
|
|
except Exception as e:
|
|
LOGGER.warning(f"pycocotools unable to run: {e}")
|
|
return stats
|