image_segmentation/ultralytics/solutions/speed_estimation.py
2025-01-20 16:21:14 +08:00

111 lines
4.8 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
from time import time
import numpy as np
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator, colors
class SpeedEstimator(BaseSolution):
"""
A class to estimate the speed of objects in a real-time video stream based on their tracks.
This class extends the BaseSolution class and provides functionality for estimating object speeds using
tracking data in video streams.
Attributes:
spd (Dict[int, float]): Dictionary storing speed data for tracked objects.
trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated.
trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects.
trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects.
annotator (Annotator): Annotator object for drawing on images.
region (List[Tuple[int, int]]): List of points defining the speed estimation region.
track_line (List[Tuple[float, float]]): List of points representing the object's track.
r_s (LineString): LineString object representing the speed estimation region.
Methods:
initialize_region: Initializes the speed estimation region.
estimate_speed: Estimates the speed of objects based on tracking data.
store_tracking_history: Stores the tracking history for an object.
extract_tracks: Extracts tracks from the current frame.
display_output: Displays the output with annotations.
Examples:
>>> estimator = SpeedEstimator()
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = estimator.estimate_speed(frame)
>>> cv2.imshow("Speed Estimation", processed_frame)
"""
def __init__(self, **kwargs):
"""Initializes the SpeedEstimator object with speed estimation parameters and data structures."""
super().__init__(**kwargs)
self.initialize_region() # Initialize speed region
self.spd = {} # set for speed data
self.trkd_ids = [] # list for already speed_estimated and tracked ID's
self.trk_pt = {} # set for tracks previous time
self.trk_pp = {} # set for tracks previous point
def estimate_speed(self, im0):
"""
Estimates the speed of objects based on tracking data.
Args:
im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images.
Returns:
(np.ndarray): Processed image with speed estimations and annotations.
Examples:
>>> estimator = SpeedEstimator()
>>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> processed_image = estimator.estimate_speed(image)
"""
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks
self.annotator.draw_region(
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
) # Draw region
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
self.store_tracking_history(track_id, box) # Store track history
# Check if track_id is already in self.trk_pp or trk_pt initialize if not
if track_id not in self.trk_pt:
self.trk_pt[track_id] = 0
if track_id not in self.trk_pp:
self.trk_pp[track_id] = self.track_line[-1]
speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)]
self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box
# Draw tracks of objects
self.annotator.draw_centroid_and_tracks(
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
)
# Calculate object speed and direction based on region intersection
if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s):
direction = "known"
else:
direction = "unknown"
# Perform speed calculation and tracking updates if direction is valid
if direction == "known" and track_id not in self.trkd_ids:
self.trkd_ids.append(track_id)
time_difference = time() - self.trk_pt[track_id]
if time_difference > 0:
self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference
self.trk_pt[track_id] = time()
self.trk_pp[track_id] = self.track_line[-1]
self.display_output(im0) # display output with base class function
return im0 # return output image for more usage