42 lines
1.4 KiB
Python
42 lines
1.4 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from ultralytics.engine.predictor import BasePredictor
|
|
from ultralytics.engine.results import Results
|
|
from ultralytics.utils import ops
|
|
|
|
|
|
class DetectionPredictor(BasePredictor):
|
|
"""
|
|
A class extending the BasePredictor class for prediction based on a detection model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils import ASSETS
|
|
from ultralytics.models.yolo.detect import DetectionPredictor
|
|
|
|
args = dict(model="yolo11n.pt", source=ASSETS)
|
|
predictor = DetectionPredictor(overrides=args)
|
|
predictor.predict_cli()
|
|
```
|
|
"""
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
"""Post-processes predictions and returns a list of Results objects."""
|
|
preds = ops.non_max_suppression(
|
|
preds,
|
|
self.args.conf,
|
|
self.args.iou,
|
|
agnostic=self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
classes=self.args.classes,
|
|
)
|
|
|
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
|
|
results = []
|
|
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
|
return results
|