# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class DetectionPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on a detection model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.detect import DetectionPredictor args = dict(model="yolo11n.pt", source=ASSETS) predictor = DetectionPredictor(overrides=args) predictor.predict_cli() ``` """ def postprocess(self, preds, img, orig_imgs): """Post-processes predictions and returns a list of Results objects.""" preds = ops.non_max_suppression( preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes, ) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) return results