# Ultralytics YOLO 🚀, AGPL-3.0 license from time import time import numpy as np from ultralytics.solutions.solutions import BaseSolution from ultralytics.utils.plotting import Annotator, colors class SpeedEstimator(BaseSolution): """ A class to estimate the speed of objects in a real-time video stream based on their tracks. This class extends the BaseSolution class and provides functionality for estimating object speeds using tracking data in video streams. Attributes: spd (Dict[int, float]): Dictionary storing speed data for tracked objects. trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated. trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects. trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects. annotator (Annotator): Annotator object for drawing on images. region (List[Tuple[int, int]]): List of points defining the speed estimation region. track_line (List[Tuple[float, float]]): List of points representing the object's track. r_s (LineString): LineString object representing the speed estimation region. Methods: initialize_region: Initializes the speed estimation region. estimate_speed: Estimates the speed of objects based on tracking data. store_tracking_history: Stores the tracking history for an object. extract_tracks: Extracts tracks from the current frame. display_output: Displays the output with annotations. Examples: >>> estimator = SpeedEstimator() >>> frame = cv2.imread("frame.jpg") >>> processed_frame = estimator.estimate_speed(frame) >>> cv2.imshow("Speed Estimation", processed_frame) """ def __init__(self, **kwargs): """Initializes the SpeedEstimator object with speed estimation parameters and data structures.""" super().__init__(**kwargs) self.initialize_region() # Initialize speed region self.spd = {} # set for speed data self.trkd_ids = [] # list for already speed_estimated and tracked ID's self.trk_pt = {} # set for tracks previous time self.trk_pp = {} # set for tracks previous point def estimate_speed(self, im0): """ Estimates the speed of objects based on tracking data. Args: im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images. Returns: (np.ndarray): Processed image with speed estimations and annotations. Examples: >>> estimator = SpeedEstimator() >>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8) >>> processed_image = estimator.estimate_speed(image) """ self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator self.extract_tracks(im0) # Extract tracks self.annotator.draw_region( reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2 ) # Draw region for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): self.store_tracking_history(track_id, box) # Store track history # Check if track_id is already in self.trk_pp or trk_pt initialize if not if track_id not in self.trk_pt: self.trk_pt[track_id] = 0 if track_id not in self.trk_pp: self.trk_pp[track_id] = self.track_line[-1] speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)] self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box # Draw tracks of objects self.annotator.draw_centroid_and_tracks( self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width ) # Calculate object speed and direction based on region intersection if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s): direction = "known" else: direction = "unknown" # Perform speed calculation and tracking updates if direction is valid if direction == "known" and track_id not in self.trkd_ids: self.trkd_ids.append(track_id) time_difference = time() - self.trk_pt[track_id] if time_difference > 0: self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference self.trk_pt[track_id] = time() self.trk_pp[track_id] = self.track_line[-1] self.display_output(im0) # display output with base class function return im0 # return output image for more usage