# Ultralytics YOLO 🚀, AGPL-3.0 license import os from pathlib import Path import numpy as np import torch from ultralytics.data import build_dataloader, build_yolo_dataset, converter from ultralytics.engine.validator import BaseValidator from ultralytics.utils import LOGGER, ops from ultralytics.utils.checks import check_requirements from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou from ultralytics.utils.plotting import output_to_target, plot_images class DetectionValidator(BaseValidator): """ A class extending the BaseValidator class for validation based on a detection model. Example: ```python from ultralytics.models.yolo.detect import DetectionValidator args = dict(model="yolo11n.pt", data="coco8.yaml") validator = DetectionValidator(args=args) validator() ``` """ def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): """Initialize detection model with necessary variables and settings.""" super().__init__(dataloader, save_dir, pbar, args, _callbacks) self.nt_per_class = None self.nt_per_image = None self.is_coco = False self.is_lvis = False self.class_map = None self.args.task = "detect" self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot) self.iouv = torch.linspace(0.5, 0.95, 10) # IoU vector for mAP@0.5:0.95 self.niou = self.iouv.numel() self.lb = [] # for autolabelling if self.args.save_hybrid: LOGGER.warning( "WARNING ⚠️ 'save_hybrid=True' will append ground truth to predictions for autolabelling.\n" "WARNING ⚠️ 'save_hybrid=True' will cause incorrect mAP.\n" ) def preprocess(self, batch): """Preprocesses batch of images for YOLO training.""" batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255 for k in ["batch_idx", "cls", "bboxes"]: batch[k] = batch[k].to(self.device) if self.args.save_hybrid: height, width = batch["img"].shape[2:] nb = len(batch["img"]) bboxes = batch["bboxes"] * torch.tensor((width, height, width, height), device=self.device) self.lb = [ torch.cat([batch["cls"][batch["batch_idx"] == i], bboxes[batch["batch_idx"] == i]], dim=-1) for i in range(nb) ] return batch def init_metrics(self, model): """Initialize evaluation metrics for YOLO.""" val = self.data.get(self.args.split, "") # validation path self.is_coco = ( isinstance(val, str) and "coco" in val and (val.endswith(f"{os.sep}val2017.txt") or val.endswith(f"{os.sep}test-dev2017.txt")) ) # is COCO self.is_lvis = isinstance(val, str) and "lvis" in val and not self.is_coco # is LVIS self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(len(model.names))) self.args.save_json |= self.args.val and (self.is_coco or self.is_lvis) and not self.training # run final val self.names = model.names self.nc = len(model.names) self.metrics.names = self.names self.metrics.plot = self.args.plots self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf) self.seen = 0 self.jdict = [] self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[]) def get_desc(self): """Return a formatted string summarizing class metrics of YOLO model.""" return ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)") def postprocess(self, preds): """Apply Non-maximum suppression to prediction outputs.""" return ops.non_max_suppression( preds, self.args.conf, self.args.iou, labels=self.lb, multi_label=True, agnostic=self.args.single_cls or self.args.agnostic_nms, max_det=self.args.max_det, ) def _prepare_batch(self, si, batch): """Prepares a batch of images and annotations for validation.""" idx = batch["batch_idx"] == si cls = batch["cls"][idx].squeeze(-1) bbox = batch["bboxes"][idx] ori_shape = batch["ori_shape"][si] imgsz = batch["img"].shape[2:] ratio_pad = batch["ratio_pad"][si] if len(cls): bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad} def _prepare_pred(self, pred, pbatch): """Prepares a batch of images and annotations for validation.""" predn = pred.clone() ops.scale_boxes( pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"] ) # native-space pred return predn def update_metrics(self, preds, batch): """Metrics.""" for si, pred in enumerate(preds): self.seen += 1 npr = len(pred) stat = dict( conf=torch.zeros(0, device=self.device), pred_cls=torch.zeros(0, device=self.device), tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), ) pbatch = self._prepare_batch(si, batch) cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") nl = len(cls) stat["target_cls"] = cls stat["target_img"] = cls.unique() if npr == 0: if nl: for k in self.stats.keys(): self.stats[k].append(stat[k]) if self.args.plots: self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) continue # Predictions if self.args.single_cls: pred[:, 5] = 0 predn = self._prepare_pred(pred, pbatch) stat["conf"] = predn[:, 4] stat["pred_cls"] = predn[:, 5] # Evaluate if nl: stat["tp"] = self._process_batch(predn, bbox, cls) if self.args.plots: self.confusion_matrix.process_batch(predn, bbox, cls) for k in self.stats.keys(): self.stats[k].append(stat[k]) # Save if self.args.save_json: self.pred_to_json(predn, batch["im_file"][si]) if self.args.save_txt: self.save_one_txt( predn, self.args.save_conf, pbatch["ori_shape"], self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt', ) def finalize_metrics(self, *args, **kwargs): """Set final values for metrics speed and confusion matrix.""" self.metrics.speed = self.speed self.metrics.confusion_matrix = self.confusion_matrix def get_stats(self): """Returns metrics statistics and results dictionary.""" stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # to numpy self.nt_per_class = np.bincount(stats["target_cls"].astype(int), minlength=self.nc) self.nt_per_image = np.bincount(stats["target_img"].astype(int), minlength=self.nc) stats.pop("target_img", None) if len(stats) and stats["tp"].any(): self.metrics.process(**stats) return self.metrics.results_dict def print_results(self): """Prints training/validation set metrics per class.""" pf = "%22s" + "%11i" * 2 + "%11.3g" * len(self.metrics.keys) # print format LOGGER.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) if self.nt_per_class.sum() == 0: LOGGER.warning(f"WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels") # Print results per class if self.args.verbose and not self.training and self.nc > 1 and len(self.stats): for i, c in enumerate(self.metrics.ap_class_index): LOGGER.info( pf % (self.names[c], self.nt_per_image[c], self.nt_per_class[c], *self.metrics.class_result(i)) ) if self.args.plots: for normalize in True, False: self.confusion_matrix.plot( save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot ) def _process_batch(self, detections, gt_bboxes, gt_cls): """ Return correct prediction matrix. Args: detections (torch.Tensor): Tensor of shape (N, 6) representing detections where each detection is (x1, y1, x2, y2, conf, class). gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground-truth bounding box coordinates. Each bounding box is of the format: (x1, y1, x2, y2). gt_cls (torch.Tensor): Tensor of shape (M,) representing target class indices. Returns: (torch.Tensor): Correct prediction matrix of shape (N, 10) for 10 IoU levels. Note: The function does not return any value directly usable for metrics calculation. Instead, it provides an intermediate representation used for evaluating predictions against ground truth. """ iou = box_iou(gt_bboxes, detections[:, :4]) return self.match_predictions(detections[:, 5], gt_cls, iou) def build_dataset(self, img_path, mode="val", batch=None): """ Build YOLO Dataset. Args: img_path (str): Path to the folder containing images. mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. batch (int, optional): Size of batches, this is for `rect`. Defaults to None. """ return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride) def get_dataloader(self, dataset_path, batch_size): """Construct and return dataloader.""" dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val") return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader def plot_val_samples(self, batch, ni): """Plot validation image samples.""" plot_images( batch["img"], batch["batch_idx"], batch["cls"].squeeze(-1), batch["bboxes"], paths=batch["im_file"], fname=self.save_dir / f"val_batch{ni}_labels.jpg", names=self.names, on_plot=self.on_plot, ) def plot_predictions(self, batch, preds, ni): """Plots predicted bounding boxes on input images and saves the result.""" plot_images( batch["img"], *output_to_target(preds, max_det=self.args.max_det), paths=batch["im_file"], fname=self.save_dir / f"val_batch{ni}_pred.jpg", names=self.names, on_plot=self.on_plot, ) # pred def save_one_txt(self, predn, save_conf, shape, file): """Save YOLO detections to a txt file in normalized coordinates in a specific format.""" from ultralytics.engine.results import Results Results( np.zeros((shape[0], shape[1]), dtype=np.uint8), path=None, names=self.names, boxes=predn[:, :6], ).save_txt(file, save_conf=save_conf) def pred_to_json(self, predn, filename): """Serialize YOLO predictions to COCO json format.""" stem = Path(filename).stem image_id = int(stem) if stem.isnumeric() else stem box = ops.xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(predn.tolist(), box.tolist()): self.jdict.append( { "image_id": image_id, "category_id": self.class_map[int(p[5])] + (1 if self.is_lvis else 0), # index starts from 1 if it's lvis "bbox": [round(x, 3) for x in b], "score": round(p[4], 5), } ) def eval_json(self, stats): """Evaluates YOLO output in JSON format and returns performance statistics.""" if self.args.save_json and (self.is_coco or self.is_lvis) and len(self.jdict): pred_json = self.save_dir / "predictions.json" # predictions anno_json = ( self.data["path"] / "annotations" / ("instances_val2017.json" if self.is_coco else f"lvis_v1_{self.args.split}.json") ) # annotations pkg = "pycocotools" if self.is_coco else "lvis" LOGGER.info(f"\nEvaluating {pkg} mAP using {pred_json} and {anno_json}...") try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb for x in pred_json, anno_json: assert x.is_file(), f"{x} file not found" check_requirements("pycocotools>=2.0.6" if self.is_coco else "lvis>=0.5.3") if self.is_coco: from pycocotools.coco import COCO # noqa from pycocotools.cocoeval import COCOeval # noqa anno = COCO(str(anno_json)) # init annotations api pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) val = COCOeval(anno, pred, "bbox") else: from lvis import LVIS, LVISEval anno = LVIS(str(anno_json)) # init annotations api pred = anno._load_json(str(pred_json)) # init predictions api (must pass string, not Path) val = LVISEval(anno, pred, "bbox") val.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval val.evaluate() val.accumulate() val.summarize() if self.is_lvis: val.print_results() # explicitly call print_results # update mAP50-95 and mAP50 stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = ( val.stats[:2] if self.is_coco else [val.results["AP50"], val.results["AP"]] ) except Exception as e: LOGGER.warning(f"{pkg} unable to run: {e}") return stats