# Ultralytics YOLO 🚀, AGPL-3.0 license # YOLO11-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose # Parameters nc: 80 # number of classes kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11.yaml with scale 'n' # [depth, width, max_channels] n: [0.50, 0.25, 1024] # summary: 344 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs s: [0.50, 0.50, 1024] # summary: 344 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs m: [0.50, 1.00, 512] # summary: 434 layers, 20973273 parameters, 20973257 gradients, 72.3 GFLOPs l: [1.00, 1.00, 512] # summary: 656 layers, 26230745 parameters, 26230729 gradients, 91.4 GFLOPs x: [1.00, 1.50, 512] # summary: 656 layers, 58889881 parameters, 58889865 gradients, 204.3 GFLOPs # YOLO11n backbone backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 2, C3k2, [256, False, 0.25]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 2, C3k2, [512, False, 0.25]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 2, C3k2, [512, True]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 2, C3k2, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 9 - [-1, 2, C2PSA, [1024]] # 10 # YOLO11n head head: - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 2, C3k2, [512, False]] # 13 - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 13], 1, Concat, [1]] # cat head P4 - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 10], 1, Concat, [1]] # cat head P5 - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large) - [[16, 19, 22], 1, Pose, [nc, kpt_shape]] # Detect(P3, P4, P5)