112 lines
5.1 KiB
Python
112 lines
5.1 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from ultralytics.solutions.solutions import BaseSolution
|
||
|
from ultralytics.utils.plotting import Annotator
|
||
|
|
||
|
|
||
|
class AIGym(BaseSolution):
|
||
|
"""
|
||
|
A class to manage gym steps of people in a real-time video stream based on their poses.
|
||
|
|
||
|
This class extends BaseSolution to monitor workouts using YOLO pose estimation models. It tracks and counts
|
||
|
repetitions of exercises based on predefined angle thresholds for up and down positions.
|
||
|
|
||
|
Attributes:
|
||
|
count (List[int]): Repetition counts for each detected person.
|
||
|
angle (List[float]): Current angle of the tracked body part for each person.
|
||
|
stage (List[str]): Current exercise stage ('up', 'down', or '-') for each person.
|
||
|
initial_stage (str | None): Initial stage of the exercise.
|
||
|
up_angle (float): Angle threshold for considering the 'up' position of an exercise.
|
||
|
down_angle (float): Angle threshold for considering the 'down' position of an exercise.
|
||
|
kpts (List[int]): Indices of keypoints used for angle calculation.
|
||
|
annotator (Annotator): Object for drawing annotations on the image.
|
||
|
|
||
|
Methods:
|
||
|
monitor: Processes a frame to detect poses, calculate angles, and count repetitions.
|
||
|
|
||
|
Examples:
|
||
|
>>> gym = AIGym(model="yolov8n-pose.pt")
|
||
|
>>> image = cv2.imread("gym_scene.jpg")
|
||
|
>>> processed_image = gym.monitor(image)
|
||
|
>>> cv2.imshow("Processed Image", processed_image)
|
||
|
>>> cv2.waitKey(0)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
"""Initializes AIGym for workout monitoring using pose estimation and predefined angles."""
|
||
|
# Check if the model name ends with '-pose'
|
||
|
if "model" in kwargs and "-pose" not in kwargs["model"]:
|
||
|
kwargs["model"] = "yolo11n-pose.pt"
|
||
|
elif "model" not in kwargs:
|
||
|
kwargs["model"] = "yolo11n-pose.pt"
|
||
|
|
||
|
super().__init__(**kwargs)
|
||
|
self.count = [] # List for counts, necessary where there are multiple objects in frame
|
||
|
self.angle = [] # List for angle, necessary where there are multiple objects in frame
|
||
|
self.stage = [] # List for stage, necessary where there are multiple objects in frame
|
||
|
|
||
|
# Extract details from CFG single time for usage later
|
||
|
self.initial_stage = None
|
||
|
self.up_angle = float(self.CFG["up_angle"]) # Pose up predefined angle to consider up pose
|
||
|
self.down_angle = float(self.CFG["down_angle"]) # Pose down predefined angle to consider down pose
|
||
|
self.kpts = self.CFG["kpts"] # User selected kpts of workouts storage for further usage
|
||
|
|
||
|
def monitor(self, im0):
|
||
|
"""
|
||
|
Monitors workouts using Ultralytics YOLO Pose Model.
|
||
|
|
||
|
This function processes an input image to track and analyze human poses for workout monitoring. It uses
|
||
|
the YOLO Pose model to detect keypoints, estimate angles, and count repetitions based on predefined
|
||
|
angle thresholds.
|
||
|
|
||
|
Args:
|
||
|
im0 (ndarray): Input image for processing.
|
||
|
|
||
|
Returns:
|
||
|
(ndarray): Processed image with annotations for workout monitoring.
|
||
|
|
||
|
Examples:
|
||
|
>>> gym = AIGym()
|
||
|
>>> image = cv2.imread("workout.jpg")
|
||
|
>>> processed_image = gym.monitor(image)
|
||
|
"""
|
||
|
# Extract tracks
|
||
|
tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])[0]
|
||
|
|
||
|
if tracks.boxes.id is not None:
|
||
|
# Extract and check keypoints
|
||
|
if len(tracks) > len(self.count):
|
||
|
new_human = len(tracks) - len(self.count)
|
||
|
self.angle += [0] * new_human
|
||
|
self.count += [0] * new_human
|
||
|
self.stage += ["-"] * new_human
|
||
|
|
||
|
# Initialize annotator
|
||
|
self.annotator = Annotator(im0, line_width=self.line_width)
|
||
|
|
||
|
# Enumerate over keypoints
|
||
|
for ind, k in enumerate(reversed(tracks.keypoints.data)):
|
||
|
# Get keypoints and estimate the angle
|
||
|
kpts = [k[int(self.kpts[i])].cpu() for i in range(3)]
|
||
|
self.angle[ind] = self.annotator.estimate_pose_angle(*kpts)
|
||
|
im0 = self.annotator.draw_specific_points(k, self.kpts, radius=self.line_width * 3)
|
||
|
|
||
|
# Determine stage and count logic based on angle thresholds
|
||
|
if self.angle[ind] < self.down_angle:
|
||
|
if self.stage[ind] == "up":
|
||
|
self.count[ind] += 1
|
||
|
self.stage[ind] = "down"
|
||
|
elif self.angle[ind] > self.up_angle:
|
||
|
self.stage[ind] = "up"
|
||
|
|
||
|
# Display angle, count, and stage text
|
||
|
self.annotator.plot_angle_and_count_and_stage(
|
||
|
angle_text=self.angle[ind], # angle text for display
|
||
|
count_text=self.count[ind], # count text for workouts
|
||
|
stage_text=self.stage[ind], # stage position text
|
||
|
center_kpt=k[int(self.kpts[1])], # center keypoint for display
|
||
|
)
|
||
|
|
||
|
self.display_output(im0) # Display output image, if environment support display
|
||
|
return im0 # return an image for writing or further usage
|