73 lines
3.0 KiB
Python
73 lines
3.0 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from pathlib import Path
|
||
|
|
||
|
from ultralytics import SAM, YOLO
|
||
|
|
||
|
|
||
|
def auto_annotate(
|
||
|
data,
|
||
|
det_model="yolo11x.pt",
|
||
|
sam_model="sam_b.pt",
|
||
|
device="",
|
||
|
conf=0.25,
|
||
|
iou=0.45,
|
||
|
imgsz=640,
|
||
|
max_det=300,
|
||
|
classes=None,
|
||
|
output_dir=None,
|
||
|
):
|
||
|
"""
|
||
|
Automatically annotates images using a YOLO object detection model and a SAM segmentation model.
|
||
|
|
||
|
This function processes images in a specified directory, detects objects using a YOLO model, and then generates
|
||
|
segmentation masks using a SAM model. The resulting annotations are saved as text files.
|
||
|
|
||
|
Args:
|
||
|
data (str): Path to a folder containing images to be annotated.
|
||
|
det_model (str): Path or name of the pre-trained YOLO detection model.
|
||
|
sam_model (str): Path or name of the pre-trained SAM segmentation model.
|
||
|
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0').
|
||
|
conf (float): Confidence threshold for detection model; default is 0.25.
|
||
|
iou (float): IoU threshold for filtering overlapping boxes in detection results; default is 0.45.
|
||
|
imgsz (int): Input image resize dimension; default is 640.
|
||
|
max_det (int): Limits detections per image to control outputs in dense scenes.
|
||
|
classes (list): Filters predictions to specified class IDs, returning only relevant detections.
|
||
|
output_dir (str | None): Directory to save the annotated results. If None, a default directory is created.
|
||
|
|
||
|
Examples:
|
||
|
>>> from ultralytics.data.annotator import auto_annotate
|
||
|
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
|
||
|
|
||
|
Notes:
|
||
|
- The function creates a new directory for output if not specified.
|
||
|
- Annotation results are saved as text files with the same names as the input images.
|
||
|
- Each line in the output text file represents a detected object with its class ID and segmentation points.
|
||
|
"""
|
||
|
det_model = YOLO(det_model)
|
||
|
sam_model = SAM(sam_model)
|
||
|
|
||
|
data = Path(data)
|
||
|
if not output_dir:
|
||
|
output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
|
||
|
Path(output_dir).mkdir(exist_ok=True, parents=True)
|
||
|
|
||
|
det_results = det_model(
|
||
|
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
|
||
|
)
|
||
|
|
||
|
for result in det_results:
|
||
|
class_ids = result.boxes.cls.int().tolist() # noqa
|
||
|
if len(class_ids):
|
||
|
boxes = result.boxes.xyxy # Boxes object for bbox outputs
|
||
|
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
|
||
|
segments = sam_results[0].masks.xyn # noqa
|
||
|
|
||
|
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f:
|
||
|
for i in range(len(segments)):
|
||
|
s = segments[i]
|
||
|
if len(s) == 0:
|
||
|
continue
|
||
|
segment = map(str, segments[i].reshape(-1).tolist())
|
||
|
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
|