111 lines
4.8 KiB
Python
111 lines
4.8 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from time import time
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ultralytics.solutions.solutions import BaseSolution
|
||
|
from ultralytics.utils.plotting import Annotator, colors
|
||
|
|
||
|
|
||
|
class SpeedEstimator(BaseSolution):
|
||
|
"""
|
||
|
A class to estimate the speed of objects in a real-time video stream based on their tracks.
|
||
|
|
||
|
This class extends the BaseSolution class and provides functionality for estimating object speeds using
|
||
|
tracking data in video streams.
|
||
|
|
||
|
Attributes:
|
||
|
spd (Dict[int, float]): Dictionary storing speed data for tracked objects.
|
||
|
trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated.
|
||
|
trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects.
|
||
|
trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects.
|
||
|
annotator (Annotator): Annotator object for drawing on images.
|
||
|
region (List[Tuple[int, int]]): List of points defining the speed estimation region.
|
||
|
track_line (List[Tuple[float, float]]): List of points representing the object's track.
|
||
|
r_s (LineString): LineString object representing the speed estimation region.
|
||
|
|
||
|
Methods:
|
||
|
initialize_region: Initializes the speed estimation region.
|
||
|
estimate_speed: Estimates the speed of objects based on tracking data.
|
||
|
store_tracking_history: Stores the tracking history for an object.
|
||
|
extract_tracks: Extracts tracks from the current frame.
|
||
|
display_output: Displays the output with annotations.
|
||
|
|
||
|
Examples:
|
||
|
>>> estimator = SpeedEstimator()
|
||
|
>>> frame = cv2.imread("frame.jpg")
|
||
|
>>> processed_frame = estimator.estimate_speed(frame)
|
||
|
>>> cv2.imshow("Speed Estimation", processed_frame)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
"""Initializes the SpeedEstimator object with speed estimation parameters and data structures."""
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.initialize_region() # Initialize speed region
|
||
|
|
||
|
self.spd = {} # set for speed data
|
||
|
self.trkd_ids = [] # list for already speed_estimated and tracked ID's
|
||
|
self.trk_pt = {} # set for tracks previous time
|
||
|
self.trk_pp = {} # set for tracks previous point
|
||
|
|
||
|
def estimate_speed(self, im0):
|
||
|
"""
|
||
|
Estimates the speed of objects based on tracking data.
|
||
|
|
||
|
Args:
|
||
|
im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images.
|
||
|
|
||
|
Returns:
|
||
|
(np.ndarray): Processed image with speed estimations and annotations.
|
||
|
|
||
|
Examples:
|
||
|
>>> estimator = SpeedEstimator()
|
||
|
>>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
||
|
>>> processed_image = estimator.estimate_speed(image)
|
||
|
"""
|
||
|
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
||
|
self.extract_tracks(im0) # Extract tracks
|
||
|
|
||
|
self.annotator.draw_region(
|
||
|
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
|
||
|
) # Draw region
|
||
|
|
||
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||
|
self.store_tracking_history(track_id, box) # Store track history
|
||
|
|
||
|
# Check if track_id is already in self.trk_pp or trk_pt initialize if not
|
||
|
if track_id not in self.trk_pt:
|
||
|
self.trk_pt[track_id] = 0
|
||
|
if track_id not in self.trk_pp:
|
||
|
self.trk_pp[track_id] = self.track_line[-1]
|
||
|
|
||
|
speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)]
|
||
|
self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box
|
||
|
|
||
|
# Draw tracks of objects
|
||
|
self.annotator.draw_centroid_and_tracks(
|
||
|
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
||
|
)
|
||
|
|
||
|
# Calculate object speed and direction based on region intersection
|
||
|
if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s):
|
||
|
direction = "known"
|
||
|
else:
|
||
|
direction = "unknown"
|
||
|
|
||
|
# Perform speed calculation and tracking updates if direction is valid
|
||
|
if direction == "known" and track_id not in self.trkd_ids:
|
||
|
self.trkd_ids.append(track_id)
|
||
|
time_difference = time() - self.trk_pt[track_id]
|
||
|
if time_difference > 0:
|
||
|
self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference
|
||
|
|
||
|
self.trk_pt[track_id] = time()
|
||
|
self.trk_pp[track_id] = self.track_line[-1]
|
||
|
|
||
|
self.display_output(im0) # display output with base class function
|
||
|
|
||
|
return im0 # return output image for more usage
|