204 lines
9.4 KiB
Python
204 lines
9.4 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from ultralytics.solutions.solutions import BaseSolution
|
||
|
from ultralytics.utils.plotting import Annotator, colors
|
||
|
|
||
|
|
||
|
class ObjectCounter(BaseSolution):
|
||
|
"""
|
||
|
A class to manage the counting of objects in a real-time video stream based on their tracks.
|
||
|
|
||
|
This class extends the BaseSolution class and provides functionality for counting objects moving in and out of a
|
||
|
specified region in a video stream. It supports both polygonal and linear regions for counting.
|
||
|
|
||
|
Attributes:
|
||
|
in_count (int): Counter for objects moving inward.
|
||
|
out_count (int): Counter for objects moving outward.
|
||
|
counted_ids (List[int]): List of IDs of objects that have been counted.
|
||
|
classwise_counts (Dict[str, Dict[str, int]]): Dictionary for counts, categorized by object class.
|
||
|
region_initialized (bool): Flag indicating whether the counting region has been initialized.
|
||
|
show_in (bool): Flag to control display of inward count.
|
||
|
show_out (bool): Flag to control display of outward count.
|
||
|
|
||
|
Methods:
|
||
|
count_objects: Counts objects within a polygonal or linear region.
|
||
|
store_classwise_counts: Initializes class-wise counts if not already present.
|
||
|
display_counts: Displays object counts on the frame.
|
||
|
count: Processes input data (frames or object tracks) and updates counts.
|
||
|
|
||
|
Examples:
|
||
|
>>> counter = ObjectCounter()
|
||
|
>>> frame = cv2.imread("frame.jpg")
|
||
|
>>> processed_frame = counter.count(frame)
|
||
|
>>> print(f"Inward count: {counter.in_count}, Outward count: {counter.out_count}")
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
"""Initializes the ObjectCounter class for real-time object counting in video streams."""
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.in_count = 0 # Counter for objects moving inward
|
||
|
self.out_count = 0 # Counter for objects moving outward
|
||
|
self.counted_ids = [] # List of IDs of objects that have been counted
|
||
|
self.classwise_counts = {} # Dictionary for counts, categorized by object class
|
||
|
self.region_initialized = False # Bool variable for region initialization
|
||
|
|
||
|
self.show_in = self.CFG["show_in"]
|
||
|
self.show_out = self.CFG["show_out"]
|
||
|
|
||
|
def count_objects(self, current_centroid, track_id, prev_position, cls):
|
||
|
"""
|
||
|
Counts objects within a polygonal or linear region based on their tracks.
|
||
|
|
||
|
Args:
|
||
|
current_centroid (Tuple[float, float]): Current centroid values in the current frame.
|
||
|
track_id (int): Unique identifier for the tracked object.
|
||
|
prev_position (Tuple[float, float]): Last frame position coordinates (x, y) of the track.
|
||
|
cls (int): Class index for classwise count updates.
|
||
|
|
||
|
Examples:
|
||
|
>>> counter = ObjectCounter()
|
||
|
>>> track_line = {1: [100, 200], 2: [110, 210], 3: [120, 220]}
|
||
|
>>> box = [130, 230, 150, 250]
|
||
|
>>> track_id = 1
|
||
|
>>> prev_position = (120, 220)
|
||
|
>>> cls = 0
|
||
|
>>> counter.count_objects(current_centroid, track_id, prev_position, cls)
|
||
|
"""
|
||
|
if prev_position is None or track_id in self.counted_ids:
|
||
|
return
|
||
|
|
||
|
if len(self.region) == 2: # Linear region (defined as a line segment)
|
||
|
line = self.LineString(self.region) # Check if the line intersects the trajectory of the object
|
||
|
if line.intersects(self.LineString([prev_position, current_centroid])):
|
||
|
# Determine orientation of the region (vertical or horizontal)
|
||
|
if abs(self.region[0][0] - self.region[1][0]) < abs(self.region[0][1] - self.region[1][1]):
|
||
|
# Vertical region: Compare x-coordinates to determine direction
|
||
|
if current_centroid[0] > prev_position[0]: # Moving right
|
||
|
self.in_count += 1
|
||
|
self.classwise_counts[self.names[cls]]["IN"] += 1
|
||
|
else: # Moving left
|
||
|
self.out_count += 1
|
||
|
self.classwise_counts[self.names[cls]]["OUT"] += 1
|
||
|
# Horizontal region: Compare y-coordinates to determine direction
|
||
|
elif current_centroid[1] > prev_position[1]: # Moving downward
|
||
|
self.in_count += 1
|
||
|
self.classwise_counts[self.names[cls]]["IN"] += 1
|
||
|
else: # Moving upward
|
||
|
self.out_count += 1
|
||
|
self.classwise_counts[self.names[cls]]["OUT"] += 1
|
||
|
self.counted_ids.append(track_id)
|
||
|
|
||
|
elif len(self.region) > 2: # Polygonal region
|
||
|
polygon = self.Polygon(self.region)
|
||
|
if polygon.contains(self.Point(current_centroid)):
|
||
|
# Determine motion direction for vertical or horizontal polygons
|
||
|
region_width = max(p[0] for p in self.region) - min(p[0] for p in self.region)
|
||
|
region_height = max(p[1] for p in self.region) - min(p[1] for p in self.region)
|
||
|
|
||
|
if (
|
||
|
region_width < region_height
|
||
|
and current_centroid[0] > prev_position[0]
|
||
|
or region_width >= region_height
|
||
|
and current_centroid[1] > prev_position[1]
|
||
|
): # Moving right
|
||
|
self.in_count += 1
|
||
|
self.classwise_counts[self.names[cls]]["IN"] += 1
|
||
|
else: # Moving left
|
||
|
self.out_count += 1
|
||
|
self.classwise_counts[self.names[cls]]["OUT"] += 1
|
||
|
self.counted_ids.append(track_id)
|
||
|
|
||
|
def store_classwise_counts(self, cls):
|
||
|
"""
|
||
|
Initialize class-wise counts for a specific object class if not already present.
|
||
|
|
||
|
Args:
|
||
|
cls (int): Class index for classwise count updates.
|
||
|
|
||
|
This method ensures that the 'classwise_counts' dictionary contains an entry for the specified class,
|
||
|
initializing 'IN' and 'OUT' counts to zero if the class is not already present.
|
||
|
|
||
|
Examples:
|
||
|
>>> counter = ObjectCounter()
|
||
|
>>> counter.store_classwise_counts(0) # Initialize counts for class index 0
|
||
|
>>> print(counter.classwise_counts)
|
||
|
{'person': {'IN': 0, 'OUT': 0}}
|
||
|
"""
|
||
|
if self.names[cls] not in self.classwise_counts:
|
||
|
self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0}
|
||
|
|
||
|
def display_counts(self, im0):
|
||
|
"""
|
||
|
Displays object counts on the input image or frame.
|
||
|
|
||
|
Args:
|
||
|
im0 (numpy.ndarray): The input image or frame to display counts on.
|
||
|
|
||
|
Examples:
|
||
|
>>> counter = ObjectCounter()
|
||
|
>>> frame = cv2.imread("image.jpg")
|
||
|
>>> counter.display_counts(frame)
|
||
|
"""
|
||
|
labels_dict = {
|
||
|
str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} "
|
||
|
f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip()
|
||
|
for key, value in self.classwise_counts.items()
|
||
|
if value["IN"] != 0 or value["OUT"] != 0
|
||
|
}
|
||
|
|
||
|
if labels_dict:
|
||
|
self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10)
|
||
|
|
||
|
def count(self, im0):
|
||
|
"""
|
||
|
Processes input data (frames or object tracks) and updates object counts.
|
||
|
|
||
|
This method initializes the counting region, extracts tracks, draws bounding boxes and regions, updates
|
||
|
object counts, and displays the results on the input image.
|
||
|
|
||
|
Args:
|
||
|
im0 (numpy.ndarray): The input image or frame to be processed.
|
||
|
|
||
|
Returns:
|
||
|
(numpy.ndarray): The processed image with annotations and count information.
|
||
|
|
||
|
Examples:
|
||
|
>>> counter = ObjectCounter()
|
||
|
>>> frame = cv2.imread("path/to/image.jpg")
|
||
|
>>> processed_frame = counter.count(frame)
|
||
|
"""
|
||
|
if not self.region_initialized:
|
||
|
self.initialize_region()
|
||
|
self.region_initialized = True
|
||
|
|
||
|
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
||
|
self.extract_tracks(im0) # Extract tracks
|
||
|
|
||
|
self.annotator.draw_region(
|
||
|
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
|
||
|
) # Draw region
|
||
|
|
||
|
# Iterate over bounding boxes, track ids and classes index
|
||
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||
|
# Draw bounding box and counting region
|
||
|
self.annotator.box_label(box, label=self.names[cls], color=colors(cls, True))
|
||
|
self.store_tracking_history(track_id, box) # Store track history
|
||
|
self.store_classwise_counts(cls) # store classwise counts in dict
|
||
|
|
||
|
# Draw tracks of objects
|
||
|
self.annotator.draw_centroid_and_tracks(
|
||
|
self.track_line, color=colors(int(cls), True), track_thickness=self.line_width
|
||
|
)
|
||
|
current_centroid = ((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)
|
||
|
# store previous position of track for object counting
|
||
|
prev_position = None
|
||
|
if len(self.track_history[track_id]) > 1:
|
||
|
prev_position = self.track_history[track_id][-2]
|
||
|
self.count_objects(current_centroid, track_id, prev_position, cls) # Perform object counting
|
||
|
|
||
|
self.display_counts(im0) # Display the counts on the frame
|
||
|
self.display_output(im0) # display output with base class function
|
||
|
|
||
|
return im0 # return output image for more usage
|