339 lines
15 KiB
Python
339 lines
15 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ultralytics.data import build_dataloader, build_yolo_dataset, converter
|
||
|
from ultralytics.engine.validator import BaseValidator
|
||
|
from ultralytics.utils import LOGGER, ops
|
||
|
from ultralytics.utils.checks import check_requirements
|
||
|
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||
|
from ultralytics.utils.plotting import output_to_target, plot_images
|
||
|
|
||
|
|
||
|
class DetectionValidator(BaseValidator):
|
||
|
"""
|
||
|
A class extending the BaseValidator class for validation based on a detection model.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.models.yolo.detect import DetectionValidator
|
||
|
|
||
|
args = dict(model="yolo11n.pt", data="coco8.yaml")
|
||
|
validator = DetectionValidator(args=args)
|
||
|
validator()
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||
|
"""Initialize detection model with necessary variables and settings."""
|
||
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||
|
self.nt_per_class = None
|
||
|
self.nt_per_image = None
|
||
|
self.is_coco = False
|
||
|
self.is_lvis = False
|
||
|
self.class_map = None
|
||
|
self.args.task = "detect"
|
||
|
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||
|
self.iouv = torch.linspace(0.5, 0.95, 10) # IoU vector for mAP@0.5:0.95
|
||
|
self.niou = self.iouv.numel()
|
||
|
self.lb = [] # for autolabelling
|
||
|
if self.args.save_hybrid:
|
||
|
LOGGER.warning(
|
||
|
"WARNING ⚠️ 'save_hybrid=True' will append ground truth to predictions for autolabelling.\n"
|
||
|
"WARNING ⚠️ 'save_hybrid=True' will cause incorrect mAP.\n"
|
||
|
)
|
||
|
|
||
|
def preprocess(self, batch):
|
||
|
"""Preprocesses batch of images for YOLO training."""
|
||
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||
|
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
|
||
|
for k in ["batch_idx", "cls", "bboxes"]:
|
||
|
batch[k] = batch[k].to(self.device)
|
||
|
|
||
|
if self.args.save_hybrid:
|
||
|
height, width = batch["img"].shape[2:]
|
||
|
nb = len(batch["img"])
|
||
|
bboxes = batch["bboxes"] * torch.tensor((width, height, width, height), device=self.device)
|
||
|
self.lb = [
|
||
|
torch.cat([batch["cls"][batch["batch_idx"] == i], bboxes[batch["batch_idx"] == i]], dim=-1)
|
||
|
for i in range(nb)
|
||
|
]
|
||
|
|
||
|
return batch
|
||
|
|
||
|
def init_metrics(self, model):
|
||
|
"""Initialize evaluation metrics for YOLO."""
|
||
|
val = self.data.get(self.args.split, "") # validation path
|
||
|
self.is_coco = (
|
||
|
isinstance(val, str)
|
||
|
and "coco" in val
|
||
|
and (val.endswith(f"{os.sep}val2017.txt") or val.endswith(f"{os.sep}test-dev2017.txt"))
|
||
|
) # is COCO
|
||
|
self.is_lvis = isinstance(val, str) and "lvis" in val and not self.is_coco # is LVIS
|
||
|
self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(len(model.names)))
|
||
|
self.args.save_json |= self.args.val and (self.is_coco or self.is_lvis) and not self.training # run final val
|
||
|
self.names = model.names
|
||
|
self.nc = len(model.names)
|
||
|
self.metrics.names = self.names
|
||
|
self.metrics.plot = self.args.plots
|
||
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
|
||
|
self.seen = 0
|
||
|
self.jdict = []
|
||
|
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])
|
||
|
|
||
|
def get_desc(self):
|
||
|
"""Return a formatted string summarizing class metrics of YOLO model."""
|
||
|
return ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)")
|
||
|
|
||
|
def postprocess(self, preds):
|
||
|
"""Apply Non-maximum suppression to prediction outputs."""
|
||
|
return ops.non_max_suppression(
|
||
|
preds,
|
||
|
self.args.conf,
|
||
|
self.args.iou,
|
||
|
labels=self.lb,
|
||
|
multi_label=True,
|
||
|
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
||
|
max_det=self.args.max_det,
|
||
|
)
|
||
|
|
||
|
def _prepare_batch(self, si, batch):
|
||
|
"""Prepares a batch of images and annotations for validation."""
|
||
|
idx = batch["batch_idx"] == si
|
||
|
cls = batch["cls"][idx].squeeze(-1)
|
||
|
bbox = batch["bboxes"][idx]
|
||
|
ori_shape = batch["ori_shape"][si]
|
||
|
imgsz = batch["img"].shape[2:]
|
||
|
ratio_pad = batch["ratio_pad"][si]
|
||
|
if len(cls):
|
||
|
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
|
||
|
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
|
||
|
return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
|
||
|
|
||
|
def _prepare_pred(self, pred, pbatch):
|
||
|
"""Prepares a batch of images and annotations for validation."""
|
||
|
predn = pred.clone()
|
||
|
ops.scale_boxes(
|
||
|
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]
|
||
|
) # native-space pred
|
||
|
return predn
|
||
|
|
||
|
def update_metrics(self, preds, batch):
|
||
|
"""Metrics."""
|
||
|
for si, pred in enumerate(preds):
|
||
|
self.seen += 1
|
||
|
npr = len(pred)
|
||
|
stat = dict(
|
||
|
conf=torch.zeros(0, device=self.device),
|
||
|
pred_cls=torch.zeros(0, device=self.device),
|
||
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||
|
)
|
||
|
pbatch = self._prepare_batch(si, batch)
|
||
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||
|
nl = len(cls)
|
||
|
stat["target_cls"] = cls
|
||
|
stat["target_img"] = cls.unique()
|
||
|
if npr == 0:
|
||
|
if nl:
|
||
|
for k in self.stats.keys():
|
||
|
self.stats[k].append(stat[k])
|
||
|
if self.args.plots:
|
||
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
||
|
continue
|
||
|
|
||
|
# Predictions
|
||
|
if self.args.single_cls:
|
||
|
pred[:, 5] = 0
|
||
|
predn = self._prepare_pred(pred, pbatch)
|
||
|
stat["conf"] = predn[:, 4]
|
||
|
stat["pred_cls"] = predn[:, 5]
|
||
|
|
||
|
# Evaluate
|
||
|
if nl:
|
||
|
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||
|
if self.args.plots:
|
||
|
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||
|
for k in self.stats.keys():
|
||
|
self.stats[k].append(stat[k])
|
||
|
|
||
|
# Save
|
||
|
if self.args.save_json:
|
||
|
self.pred_to_json(predn, batch["im_file"][si])
|
||
|
if self.args.save_txt:
|
||
|
self.save_one_txt(
|
||
|
predn,
|
||
|
self.args.save_conf,
|
||
|
pbatch["ori_shape"],
|
||
|
self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt',
|
||
|
)
|
||
|
|
||
|
def finalize_metrics(self, *args, **kwargs):
|
||
|
"""Set final values for metrics speed and confusion matrix."""
|
||
|
self.metrics.speed = self.speed
|
||
|
self.metrics.confusion_matrix = self.confusion_matrix
|
||
|
|
||
|
def get_stats(self):
|
||
|
"""Returns metrics statistics and results dictionary."""
|
||
|
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # to numpy
|
||
|
self.nt_per_class = np.bincount(stats["target_cls"].astype(int), minlength=self.nc)
|
||
|
self.nt_per_image = np.bincount(stats["target_img"].astype(int), minlength=self.nc)
|
||
|
stats.pop("target_img", None)
|
||
|
if len(stats) and stats["tp"].any():
|
||
|
self.metrics.process(**stats)
|
||
|
return self.metrics.results_dict
|
||
|
|
||
|
def print_results(self):
|
||
|
"""Prints training/validation set metrics per class."""
|
||
|
pf = "%22s" + "%11i" * 2 + "%11.3g" * len(self.metrics.keys) # print format
|
||
|
LOGGER.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||
|
if self.nt_per_class.sum() == 0:
|
||
|
LOGGER.warning(f"WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels")
|
||
|
|
||
|
# Print results per class
|
||
|
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
|
||
|
for i, c in enumerate(self.metrics.ap_class_index):
|
||
|
LOGGER.info(
|
||
|
pf % (self.names[c], self.nt_per_image[c], self.nt_per_class[c], *self.metrics.class_result(i))
|
||
|
)
|
||
|
|
||
|
if self.args.plots:
|
||
|
for normalize in True, False:
|
||
|
self.confusion_matrix.plot(
|
||
|
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
|
||
|
)
|
||
|
|
||
|
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
||
|
"""
|
||
|
Return correct prediction matrix.
|
||
|
|
||
|
Args:
|
||
|
detections (torch.Tensor): Tensor of shape (N, 6) representing detections where each detection is
|
||
|
(x1, y1, x2, y2, conf, class).
|
||
|
gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground-truth bounding box coordinates. Each
|
||
|
bounding box is of the format: (x1, y1, x2, y2).
|
||
|
gt_cls (torch.Tensor): Tensor of shape (M,) representing target class indices.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): Correct prediction matrix of shape (N, 10) for 10 IoU levels.
|
||
|
|
||
|
Note:
|
||
|
The function does not return any value directly usable for metrics calculation. Instead, it provides an
|
||
|
intermediate representation used for evaluating predictions against ground truth.
|
||
|
"""
|
||
|
iou = box_iou(gt_bboxes, detections[:, :4])
|
||
|
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||
|
|
||
|
def build_dataset(self, img_path, mode="val", batch=None):
|
||
|
"""
|
||
|
Build YOLO Dataset.
|
||
|
|
||
|
Args:
|
||
|
img_path (str): Path to the folder containing images.
|
||
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||
|
"""
|
||
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride)
|
||
|
|
||
|
def get_dataloader(self, dataset_path, batch_size):
|
||
|
"""Construct and return dataloader."""
|
||
|
dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val")
|
||
|
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader
|
||
|
|
||
|
def plot_val_samples(self, batch, ni):
|
||
|
"""Plot validation image samples."""
|
||
|
plot_images(
|
||
|
batch["img"],
|
||
|
batch["batch_idx"],
|
||
|
batch["cls"].squeeze(-1),
|
||
|
batch["bboxes"],
|
||
|
paths=batch["im_file"],
|
||
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||
|
names=self.names,
|
||
|
on_plot=self.on_plot,
|
||
|
)
|
||
|
|
||
|
def plot_predictions(self, batch, preds, ni):
|
||
|
"""Plots predicted bounding boxes on input images and saves the result."""
|
||
|
plot_images(
|
||
|
batch["img"],
|
||
|
*output_to_target(preds, max_det=self.args.max_det),
|
||
|
paths=batch["im_file"],
|
||
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||
|
names=self.names,
|
||
|
on_plot=self.on_plot,
|
||
|
) # pred
|
||
|
|
||
|
def save_one_txt(self, predn, save_conf, shape, file):
|
||
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
||
|
from ultralytics.engine.results import Results
|
||
|
|
||
|
Results(
|
||
|
np.zeros((shape[0], shape[1]), dtype=np.uint8),
|
||
|
path=None,
|
||
|
names=self.names,
|
||
|
boxes=predn[:, :6],
|
||
|
).save_txt(file, save_conf=save_conf)
|
||
|
|
||
|
def pred_to_json(self, predn, filename):
|
||
|
"""Serialize YOLO predictions to COCO json format."""
|
||
|
stem = Path(filename).stem
|
||
|
image_id = int(stem) if stem.isnumeric() else stem
|
||
|
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||
|
for p, b in zip(predn.tolist(), box.tolist()):
|
||
|
self.jdict.append(
|
||
|
{
|
||
|
"image_id": image_id,
|
||
|
"category_id": self.class_map[int(p[5])]
|
||
|
+ (1 if self.is_lvis else 0), # index starts from 1 if it's lvis
|
||
|
"bbox": [round(x, 3) for x in b],
|
||
|
"score": round(p[4], 5),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
def eval_json(self, stats):
|
||
|
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
||
|
if self.args.save_json and (self.is_coco or self.is_lvis) and len(self.jdict):
|
||
|
pred_json = self.save_dir / "predictions.json" # predictions
|
||
|
anno_json = (
|
||
|
self.data["path"]
|
||
|
/ "annotations"
|
||
|
/ ("instances_val2017.json" if self.is_coco else f"lvis_v1_{self.args.split}.json")
|
||
|
) # annotations
|
||
|
pkg = "pycocotools" if self.is_coco else "lvis"
|
||
|
LOGGER.info(f"\nEvaluating {pkg} mAP using {pred_json} and {anno_json}...")
|
||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||
|
for x in pred_json, anno_json:
|
||
|
assert x.is_file(), f"{x} file not found"
|
||
|
check_requirements("pycocotools>=2.0.6" if self.is_coco else "lvis>=0.5.3")
|
||
|
if self.is_coco:
|
||
|
from pycocotools.coco import COCO # noqa
|
||
|
from pycocotools.cocoeval import COCOeval # noqa
|
||
|
|
||
|
anno = COCO(str(anno_json)) # init annotations api
|
||
|
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||
|
val = COCOeval(anno, pred, "bbox")
|
||
|
else:
|
||
|
from lvis import LVIS, LVISEval
|
||
|
|
||
|
anno = LVIS(str(anno_json)) # init annotations api
|
||
|
pred = anno._load_json(str(pred_json)) # init predictions api (must pass string, not Path)
|
||
|
val = LVISEval(anno, pred, "bbox")
|
||
|
val.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
|
||
|
val.evaluate()
|
||
|
val.accumulate()
|
||
|
val.summarize()
|
||
|
if self.is_lvis:
|
||
|
val.print_results() # explicitly call print_results
|
||
|
# update mAP50-95 and mAP50
|
||
|
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = (
|
||
|
val.stats[:2] if self.is_coco else [val.results["AP50"], val.results["AP"]]
|
||
|
)
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f"{pkg} unable to run: {e}")
|
||
|
return stats
|