80 lines
2.9 KiB
Python
80 lines
2.9 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from copy import copy
|
||
|
|
||
|
from ultralytics.models import yolo
|
||
|
from ultralytics.nn.tasks import PoseModel
|
||
|
from ultralytics.utils import DEFAULT_CFG, LOGGER
|
||
|
from ultralytics.utils.plotting import plot_images, plot_results
|
||
|
|
||
|
|
||
|
class PoseTrainer(yolo.detect.DetectionTrainer):
|
||
|
"""
|
||
|
A class extending the DetectionTrainer class for training based on a pose model.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.models.yolo.pose import PoseTrainer
|
||
|
|
||
|
args = dict(model="yolov8n-pose.pt", data="coco8-pose.yaml", epochs=3)
|
||
|
trainer = PoseTrainer(overrides=args)
|
||
|
trainer.train()
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||
|
"""Initialize a PoseTrainer object with specified configurations and overrides."""
|
||
|
if overrides is None:
|
||
|
overrides = {}
|
||
|
overrides["task"] = "pose"
|
||
|
super().__init__(cfg, overrides, _callbacks)
|
||
|
|
||
|
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
|
||
|
LOGGER.warning(
|
||
|
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||
|
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
||
|
)
|
||
|
|
||
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
||
|
"""Get pose estimation model with specified configuration and weights."""
|
||
|
model = PoseModel(cfg, ch=3, nc=self.data["nc"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose)
|
||
|
if weights:
|
||
|
model.load(weights)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def set_model_attributes(self):
|
||
|
"""Sets keypoints shape attribute of PoseModel."""
|
||
|
super().set_model_attributes()
|
||
|
self.model.kpt_shape = self.data["kpt_shape"]
|
||
|
|
||
|
def get_validator(self):
|
||
|
"""Returns an instance of the PoseValidator class for validation."""
|
||
|
self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss"
|
||
|
return yolo.pose.PoseValidator(
|
||
|
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
||
|
)
|
||
|
|
||
|
def plot_training_samples(self, batch, ni):
|
||
|
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
|
||
|
images = batch["img"]
|
||
|
kpts = batch["keypoints"]
|
||
|
cls = batch["cls"].squeeze(-1)
|
||
|
bboxes = batch["bboxes"]
|
||
|
paths = batch["im_file"]
|
||
|
batch_idx = batch["batch_idx"]
|
||
|
plot_images(
|
||
|
images,
|
||
|
batch_idx,
|
||
|
cls,
|
||
|
bboxes,
|
||
|
kpts=kpts,
|
||
|
paths=paths,
|
||
|
fname=self.save_dir / f"train_batch{ni}.jpg",
|
||
|
on_plot=self.on_plot,
|
||
|
)
|
||
|
|
||
|
def plot_metrics(self):
|
||
|
"""Plots training/val metrics."""
|
||
|
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png
|