57 lines
2.3 KiB
Python
57 lines
2.3 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from ultralytics.engine.results import Results
|
||
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
||
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
|
||
|
|
||
|
|
||
|
class PosePredictor(DetectionPredictor):
|
||
|
"""
|
||
|
A class extending the DetectionPredictor class for prediction based on a pose model.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.utils import ASSETS
|
||
|
from ultralytics.models.yolo.pose import PosePredictor
|
||
|
|
||
|
args = dict(model="yolov8n-pose.pt", source=ASSETS)
|
||
|
predictor = PosePredictor(overrides=args)
|
||
|
predictor.predict_cli()
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||
|
"""Initializes PosePredictor, sets task to 'pose' and logs a warning for using 'mps' as device."""
|
||
|
super().__init__(cfg, overrides, _callbacks)
|
||
|
self.args.task = "pose"
|
||
|
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
|
||
|
LOGGER.warning(
|
||
|
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||
|
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
||
|
)
|
||
|
|
||
|
def postprocess(self, preds, img, orig_imgs):
|
||
|
"""Return detection results for a given input image or list of images."""
|
||
|
preds = ops.non_max_suppression(
|
||
|
preds,
|
||
|
self.args.conf,
|
||
|
self.args.iou,
|
||
|
agnostic=self.args.agnostic_nms,
|
||
|
max_det=self.args.max_det,
|
||
|
classes=self.args.classes,
|
||
|
nc=len(self.model.names),
|
||
|
)
|
||
|
|
||
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||
|
|
||
|
results = []
|
||
|
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
|
||
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
|
||
|
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
||
|
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
|
||
|
results.append(
|
||
|
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)
|
||
|
)
|
||
|
return results
|