795 lines
34 KiB
Python
795 lines
34 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from typing import List, Optional, Tuple, Type
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from ultralytics.nn.modules import LayerNorm2d
|
||
|
|
||
|
from .blocks import (
|
||
|
Block,
|
||
|
CXBlock,
|
||
|
Fuser,
|
||
|
MaskDownSampler,
|
||
|
MultiScaleBlock,
|
||
|
PatchEmbed,
|
||
|
PositionEmbeddingRandom,
|
||
|
PositionEmbeddingSine,
|
||
|
)
|
||
|
|
||
|
|
||
|
class ImageEncoderViT(nn.Module):
|
||
|
"""
|
||
|
An image encoder using Vision Transformer (ViT) architecture for encoding images into a compact latent space.
|
||
|
|
||
|
This class processes images by splitting them into patches, applying transformer blocks, and generating a final
|
||
|
encoded representation through a neck module.
|
||
|
|
||
|
Attributes:
|
||
|
img_size (int): Dimension of input images, assumed to be square.
|
||
|
patch_embed (PatchEmbed): Module for patch embedding.
|
||
|
pos_embed (nn.Parameter | None): Absolute positional embedding for patches.
|
||
|
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings.
|
||
|
neck (nn.Sequential): Neck module to further process the output.
|
||
|
|
||
|
Methods:
|
||
|
forward: Processes input through patch embedding, positional embedding, blocks, and neck.
|
||
|
|
||
|
Examples:
|
||
|
>>> import torch
|
||
|
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
|
||
|
>>> input_image = torch.randn(1, 3, 224, 224)
|
||
|
>>> output = encoder(input_image)
|
||
|
>>> print(output.shape)
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
img_size: int = 1024,
|
||
|
patch_size: int = 16,
|
||
|
in_chans: int = 3,
|
||
|
embed_dim: int = 768,
|
||
|
depth: int = 12,
|
||
|
num_heads: int = 12,
|
||
|
mlp_ratio: float = 4.0,
|
||
|
out_chans: int = 256,
|
||
|
qkv_bias: bool = True,
|
||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||
|
use_abs_pos: bool = True,
|
||
|
use_rel_pos: bool = False,
|
||
|
rel_pos_zero_init: bool = True,
|
||
|
window_size: int = 0,
|
||
|
global_attn_indexes: Tuple[int, ...] = (),
|
||
|
) -> None:
|
||
|
"""
|
||
|
Initializes an ImageEncoderViT instance for encoding images using Vision Transformer architecture.
|
||
|
|
||
|
Args:
|
||
|
img_size (int): Input image size, assumed to be square.
|
||
|
patch_size (int): Size of image patches.
|
||
|
in_chans (int): Number of input image channels.
|
||
|
embed_dim (int): Dimension of patch embeddings.
|
||
|
depth (int): Number of transformer blocks.
|
||
|
num_heads (int): Number of attention heads in each block.
|
||
|
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
||
|
out_chans (int): Number of output channels from the neck module.
|
||
|
qkv_bias (bool): If True, adds learnable bias to query, key, value projections.
|
||
|
norm_layer (Type[nn.Module]): Type of normalization layer to use.
|
||
|
act_layer (Type[nn.Module]): Type of activation layer to use.
|
||
|
use_abs_pos (bool): If True, uses absolute positional embeddings.
|
||
|
use_rel_pos (bool): If True, adds relative positional embeddings to attention maps.
|
||
|
rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
|
||
|
window_size (int): Size of attention window for windowed attention blocks.
|
||
|
global_attn_indexes (Tuple[int, ...]): Indices of blocks that use global attention.
|
||
|
|
||
|
Attributes:
|
||
|
img_size (int): Dimension of input images.
|
||
|
patch_embed (PatchEmbed): Module for patch embedding.
|
||
|
pos_embed (nn.Parameter | None): Absolute positional embedding for patches.
|
||
|
blocks (nn.ModuleList): List of transformer blocks.
|
||
|
neck (nn.Sequential): Neck module for final processing.
|
||
|
|
||
|
Examples:
|
||
|
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
|
||
|
>>> input_image = torch.randn(1, 3, 224, 224)
|
||
|
>>> output = encoder(input_image)
|
||
|
>>> print(output.shape)
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.img_size = img_size
|
||
|
|
||
|
self.patch_embed = PatchEmbed(
|
||
|
kernel_size=(patch_size, patch_size),
|
||
|
stride=(patch_size, patch_size),
|
||
|
in_chans=in_chans,
|
||
|
embed_dim=embed_dim,
|
||
|
)
|
||
|
|
||
|
self.pos_embed: Optional[nn.Parameter] = None
|
||
|
if use_abs_pos:
|
||
|
# Initialize absolute positional embedding with pretrain image size.
|
||
|
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
|
||
|
|
||
|
self.blocks = nn.ModuleList()
|
||
|
for i in range(depth):
|
||
|
block = Block(
|
||
|
dim=embed_dim,
|
||
|
num_heads=num_heads,
|
||
|
mlp_ratio=mlp_ratio,
|
||
|
qkv_bias=qkv_bias,
|
||
|
norm_layer=norm_layer,
|
||
|
act_layer=act_layer,
|
||
|
use_rel_pos=use_rel_pos,
|
||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||
|
window_size=window_size if i not in global_attn_indexes else 0,
|
||
|
input_size=(img_size // patch_size, img_size // patch_size),
|
||
|
)
|
||
|
self.blocks.append(block)
|
||
|
|
||
|
self.neck = nn.Sequential(
|
||
|
nn.Conv2d(
|
||
|
embed_dim,
|
||
|
out_chans,
|
||
|
kernel_size=1,
|
||
|
bias=False,
|
||
|
),
|
||
|
LayerNorm2d(out_chans),
|
||
|
nn.Conv2d(
|
||
|
out_chans,
|
||
|
out_chans,
|
||
|
kernel_size=3,
|
||
|
padding=1,
|
||
|
bias=False,
|
||
|
),
|
||
|
LayerNorm2d(out_chans),
|
||
|
)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
"""Processes input through patch embedding, positional embedding, transformer blocks, and neck module."""
|
||
|
x = self.patch_embed(x)
|
||
|
if self.pos_embed is not None:
|
||
|
pos_embed = (
|
||
|
F.interpolate(self.pos_embed.permute(0, 3, 1, 2), scale_factor=self.img_size / 1024).permute(0, 2, 3, 1)
|
||
|
if self.img_size != 1024
|
||
|
else self.pos_embed
|
||
|
)
|
||
|
x = x + pos_embed
|
||
|
for blk in self.blocks:
|
||
|
x = blk(x)
|
||
|
return self.neck(x.permute(0, 3, 1, 2))
|
||
|
|
||
|
|
||
|
class PromptEncoder(nn.Module):
|
||
|
"""
|
||
|
Encodes different types of prompts for input to SAM's mask decoder, producing sparse and dense embeddings.
|
||
|
|
||
|
Attributes:
|
||
|
embed_dim (int): Dimension of the embeddings.
|
||
|
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
|
||
|
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
|
||
|
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
|
||
|
num_point_embeddings (int): Number of point embeddings for different types of points.
|
||
|
point_embeddings (nn.ModuleList): List of point embeddings.
|
||
|
not_a_point_embed (nn.Embedding): Embedding for points that are not part of any label.
|
||
|
mask_input_size (Tuple[int, int]): Size of the input mask.
|
||
|
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
|
||
|
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided.
|
||
|
|
||
|
Methods:
|
||
|
get_dense_pe: Returns the positional encoding used to encode point prompts.
|
||
|
forward: Embeds different types of prompts, returning both sparse and dense embeddings.
|
||
|
|
||
|
Examples:
|
||
|
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||
|
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
|
||
|
>>> boxes = torch.rand(1, 2, 2)
|
||
|
>>> masks = torch.rand(1, 1, 256, 256)
|
||
|
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
|
||
|
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
|
||
|
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
image_embedding_size: Tuple[int, int],
|
||
|
input_image_size: Tuple[int, int],
|
||
|
mask_in_chans: int,
|
||
|
activation: Type[nn.Module] = nn.GELU,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Initializes the PromptEncoder module for encoding various types of prompts.
|
||
|
|
||
|
This module encodes different types of prompts (points, boxes, masks) for input to SAM's mask decoder,
|
||
|
producing both sparse and dense embeddings.
|
||
|
|
||
|
Args:
|
||
|
embed_dim (int): The dimension of the embeddings.
|
||
|
image_embedding_size (Tuple[int, int]): The spatial size of the image embedding as (H, W).
|
||
|
input_image_size (Tuple[int, int]): The padded size of the input image as (H, W).
|
||
|
mask_in_chans (int): The number of hidden channels used for encoding input masks.
|
||
|
activation (Type[nn.Module]): The activation function to use when encoding input masks.
|
||
|
|
||
|
Attributes:
|
||
|
embed_dim (int): Dimension of the embeddings.
|
||
|
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
|
||
|
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
|
||
|
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
|
||
|
num_point_embeddings (int): Number of point embeddings for different types of points.
|
||
|
point_embeddings (nn.ModuleList): List of point embeddings.
|
||
|
not_a_point_embed (nn.Embedding): Embedding for points that are not part of any label.
|
||
|
mask_input_size (Tuple[int, int]): Size of the input mask.
|
||
|
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
|
||
|
|
||
|
Examples:
|
||
|
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||
|
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
|
||
|
>>> boxes = torch.rand(1, 2, 2)
|
||
|
>>> masks = torch.rand(1, 1, 256, 256)
|
||
|
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
|
||
|
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
|
||
|
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.input_image_size = input_image_size
|
||
|
self.image_embedding_size = image_embedding_size
|
||
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||
|
|
||
|
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||
|
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
|
||
|
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||
|
|
||
|
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||
|
self.mask_downscaling = nn.Sequential(
|
||
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||
|
LayerNorm2d(mask_in_chans // 4),
|
||
|
activation(),
|
||
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||
|
LayerNorm2d(mask_in_chans),
|
||
|
activation(),
|
||
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||
|
)
|
||
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||
|
|
||
|
def get_dense_pe(self) -> torch.Tensor:
|
||
|
"""
|
||
|
Returns the dense positional encoding used for encoding point prompts.
|
||
|
|
||
|
This method generates a positional encoding for a dense set of points matching the shape of the image
|
||
|
encoding. The encoding is used to provide spatial information to the model when processing point prompts.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): Positional encoding tensor with shape (1, embed_dim, H, W), where H and W are the
|
||
|
height and width of the image embedding size, respectively.
|
||
|
|
||
|
Examples:
|
||
|
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||
|
>>> dense_pe = prompt_encoder.get_dense_pe()
|
||
|
>>> print(dense_pe.shape)
|
||
|
torch.Size([1, 256, 64, 64])
|
||
|
"""
|
||
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||
|
|
||
|
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
|
||
|
"""Embeds point prompts by applying positional encoding and label-specific embeddings."""
|
||
|
points = points + 0.5 # Shift to center of pixel
|
||
|
if pad:
|
||
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||
|
points = torch.cat([points, padding_point], dim=1)
|
||
|
labels = torch.cat([labels, padding_label], dim=1)
|
||
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||
|
point_embedding[labels == -1] = 0.0
|
||
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||
|
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
||
|
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
||
|
return point_embedding
|
||
|
|
||
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||
|
"""Embeds box prompts by applying positional encoding and adding corner embeddings."""
|
||
|
boxes = boxes + 0.5 # Shift to center of pixel
|
||
|
coords = boxes.reshape(-1, 2, 2)
|
||
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||
|
return corner_embedding
|
||
|
|
||
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||
|
"""Embeds mask inputs by downscaling and processing through convolutional layers."""
|
||
|
return self.mask_downscaling(masks)
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_batch_size(
|
||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||
|
boxes: Optional[torch.Tensor],
|
||
|
masks: Optional[torch.Tensor],
|
||
|
) -> int:
|
||
|
"""Gets the batch size of the output given the batch size of the input prompts."""
|
||
|
if points is not None:
|
||
|
return points[0].shape[0]
|
||
|
elif boxes is not None:
|
||
|
return boxes.shape[0]
|
||
|
elif masks is not None:
|
||
|
return masks.shape[0]
|
||
|
else:
|
||
|
return 1
|
||
|
|
||
|
def _get_device(self) -> torch.device:
|
||
|
"""Returns the device of the first point embedding's weight tensor."""
|
||
|
return self.point_embeddings[0].weight.device
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||
|
boxes: Optional[torch.Tensor],
|
||
|
masks: Optional[torch.Tensor],
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Embeds different types of prompts, returning both sparse and dense embeddings.
|
||
|
|
||
|
Args:
|
||
|
points (Tuple[torch.Tensor, torch.Tensor] | None): Point coordinates and labels to embed. The first
|
||
|
tensor contains coordinates with shape (B, N, 2), and the second tensor contains labels with
|
||
|
shape (B, N).
|
||
|
boxes (torch.Tensor | None): Boxes to embed with shape (B, M, 2, 2), where M is the number of boxes.
|
||
|
masks (torch.Tensor | None): Masks to embed with shape (B, 1, H, W).
|
||
|
|
||
|
Returns:
|
||
|
(Tuple[torch.Tensor, torch.Tensor]): A tuple containing:
|
||
|
- sparse_embeddings (torch.Tensor): Sparse embeddings for points and boxes with shape (B, N, embed_dim).
|
||
|
- dense_embeddings (torch.Tensor): Dense embeddings for masks of shape (B, embed_dim, embed_H, embed_W).
|
||
|
|
||
|
Examples:
|
||
|
>>> encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||
|
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
|
||
|
>>> boxes = torch.rand(1, 2, 2, 2)
|
||
|
>>> masks = torch.rand(1, 1, 256, 256)
|
||
|
>>> sparse_emb, dense_emb = encoder(points, boxes, masks)
|
||
|
>>> print(sparse_emb.shape, dense_emb.shape)
|
||
|
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
|
||
|
"""
|
||
|
bs = self._get_batch_size(points, boxes, masks)
|
||
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
||
|
if points is not None:
|
||
|
coords, labels = points
|
||
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||
|
if boxes is not None:
|
||
|
box_embeddings = self._embed_boxes(boxes)
|
||
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||
|
|
||
|
if masks is not None:
|
||
|
dense_embeddings = self._embed_masks(masks)
|
||
|
else:
|
||
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||
|
)
|
||
|
|
||
|
return sparse_embeddings, dense_embeddings
|
||
|
|
||
|
|
||
|
class MemoryEncoder(nn.Module):
|
||
|
"""
|
||
|
Encodes pixel features and masks into a memory representation for efficient image segmentation.
|
||
|
|
||
|
This class processes pixel-level features and masks, fusing them to generate encoded memory representations
|
||
|
suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
|
||
|
|
||
|
Attributes:
|
||
|
mask_downsampler (MaskDownSampler): Module for downsampling input masks.
|
||
|
pix_feat_proj (nn.Conv2d): Convolutional layer for projecting pixel features.
|
||
|
fuser (Fuser): Module for fusing pixel features and masks.
|
||
|
position_encoding (PositionEmbeddingSine): Module for adding positional encoding to features.
|
||
|
out_proj (nn.Module): Output projection layer, either nn.Identity or nn.Conv2d.
|
||
|
|
||
|
Methods:
|
||
|
forward: Processes input pixel features and masks to generate encoded memory representations.
|
||
|
|
||
|
Examples:
|
||
|
>>> import torch
|
||
|
>>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
|
||
|
>>> pix_feat = torch.randn(1, 256, 64, 64)
|
||
|
>>> masks = torch.randn(1, 1, 64, 64)
|
||
|
>>> encoded_feat, pos = encoder(pix_feat, masks)
|
||
|
>>> print(encoded_feat.shape, pos.shape)
|
||
|
torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_dim,
|
||
|
in_dim=256, # in_dim of pix_feats
|
||
|
):
|
||
|
"""Initializes the MemoryEncoder for encoding pixel features and masks into memory representations."""
|
||
|
super().__init__()
|
||
|
|
||
|
self.mask_downsampler = MaskDownSampler(kernel_size=3, stride=2, padding=1)
|
||
|
|
||
|
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
||
|
self.fuser = Fuser(CXBlock(dim=256), num_layers=2)
|
||
|
self.position_encoding = PositionEmbeddingSine(num_pos_feats=64)
|
||
|
self.out_proj = nn.Identity()
|
||
|
if out_dim != in_dim:
|
||
|
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
pix_feat: torch.Tensor,
|
||
|
masks: torch.Tensor,
|
||
|
skip_mask_sigmoid: bool = False,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""Processes pixel features and masks to generate encoded memory representations for segmentation."""
|
||
|
if not skip_mask_sigmoid:
|
||
|
masks = F.sigmoid(masks)
|
||
|
masks = self.mask_downsampler(masks)
|
||
|
|
||
|
# Fuse pix_feats and downsampled masks, in case the visual features are on CPU, cast them to CUDA
|
||
|
pix_feat = pix_feat.to(masks.device)
|
||
|
|
||
|
x = self.pix_feat_proj(pix_feat)
|
||
|
x = x + masks
|
||
|
x = self.fuser(x)
|
||
|
x = self.out_proj(x)
|
||
|
|
||
|
pos = self.position_encoding(x).to(x.dtype)
|
||
|
|
||
|
return {"vision_features": x, "vision_pos_enc": [pos]}
|
||
|
|
||
|
|
||
|
class ImageEncoder(nn.Module):
|
||
|
"""
|
||
|
Encodes images using a trunk-neck architecture, producing multiscale features and positional encodings.
|
||
|
|
||
|
This class combines a trunk network for feature extraction with a neck network for feature refinement
|
||
|
and positional encoding generation. It can optionally discard the lowest resolution features.
|
||
|
|
||
|
Attributes:
|
||
|
trunk (nn.Module): The trunk network for initial feature extraction.
|
||
|
neck (nn.Module): The neck network for feature refinement and positional encoding generation.
|
||
|
scalp (int): Number of lowest resolution feature levels to discard.
|
||
|
|
||
|
Methods:
|
||
|
forward: Processes the input image through the trunk and neck networks.
|
||
|
|
||
|
Examples:
|
||
|
>>> trunk = SomeTrunkNetwork()
|
||
|
>>> neck = SomeNeckNetwork()
|
||
|
>>> encoder = ImageEncoder(trunk, neck, scalp=1)
|
||
|
>>> image = torch.randn(1, 3, 224, 224)
|
||
|
>>> output = encoder(image)
|
||
|
>>> print(output.keys())
|
||
|
dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
trunk: nn.Module,
|
||
|
neck: nn.Module,
|
||
|
scalp: int = 0,
|
||
|
):
|
||
|
"""Initializes the ImageEncoder with trunk and neck networks for feature extraction and refinement."""
|
||
|
super().__init__()
|
||
|
self.trunk = trunk
|
||
|
self.neck = neck
|
||
|
self.scalp = scalp
|
||
|
assert (
|
||
|
self.trunk.channel_list == self.neck.backbone_channel_list
|
||
|
), f"Channel dims of trunk {self.trunk.channel_list} and neck {self.neck.backbone_channel_list} do not match."
|
||
|
|
||
|
def forward(self, sample: torch.Tensor):
|
||
|
"""Encodes input through patch embedding, positional embedding, transformer blocks, and neck module."""
|
||
|
features, pos = self.neck(self.trunk(sample))
|
||
|
if self.scalp > 0:
|
||
|
# Discard the lowest resolution features
|
||
|
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
||
|
|
||
|
src = features[-1]
|
||
|
return {
|
||
|
"vision_features": src,
|
||
|
"vision_pos_enc": pos,
|
||
|
"backbone_fpn": features,
|
||
|
}
|
||
|
|
||
|
|
||
|
class FpnNeck(nn.Module):
|
||
|
"""
|
||
|
A Feature Pyramid Network (FPN) neck variant for multiscale feature fusion in object detection models.
|
||
|
|
||
|
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
|
||
|
similar to ViT positional embedding interpolation.
|
||
|
|
||
|
Attributes:
|
||
|
position_encoding (PositionEmbeddingSine): Sinusoidal positional encoding module.
|
||
|
convs (nn.ModuleList): List of convolutional layers for each backbone level.
|
||
|
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
|
||
|
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
||
|
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
|
||
|
fpn_top_down_levels (List[int]): Levels to have top-down features in outputs.
|
||
|
|
||
|
Methods:
|
||
|
forward: Performs forward pass through the FPN neck.
|
||
|
|
||
|
Examples:
|
||
|
>>> backbone_channels = [64, 128, 256, 512]
|
||
|
>>> fpn_neck = FpnNeck(256, backbone_channels)
|
||
|
>>> inputs = [torch.rand(1, c, 32, 32) for c in backbone_channels]
|
||
|
>>> outputs, positions = fpn_neck(inputs)
|
||
|
>>> print(len(outputs), len(positions))
|
||
|
4 4
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
d_model: int,
|
||
|
backbone_channel_list: List[int],
|
||
|
kernel_size: int = 1,
|
||
|
stride: int = 1,
|
||
|
padding: int = 0,
|
||
|
fpn_interp_model: str = "bilinear",
|
||
|
fuse_type: str = "sum",
|
||
|
fpn_top_down_levels: Optional[List[int]] = None,
|
||
|
):
|
||
|
"""
|
||
|
Initializes a modified Feature Pyramid Network (FPN) neck.
|
||
|
|
||
|
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
|
||
|
similar to ViT positional embedding interpolation.
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Dimension of the model.
|
||
|
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
|
||
|
kernel_size (int): Kernel size for the convolutional layers.
|
||
|
stride (int): Stride for the convolutional layers.
|
||
|
padding (int): Padding for the convolutional layers.
|
||
|
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
||
|
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
|
||
|
fpn_top_down_levels (Optional[List[int]]): Levels to have top-down features in outputs.
|
||
|
|
||
|
Examples:
|
||
|
>>> backbone_channels = [64, 128, 256, 512]
|
||
|
>>> fpn_neck = FpnNeck(256, backbone_channels)
|
||
|
>>> print(fpn_neck)
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.position_encoding = PositionEmbeddingSine(num_pos_feats=256)
|
||
|
self.convs = nn.ModuleList()
|
||
|
self.backbone_channel_list = backbone_channel_list
|
||
|
for dim in backbone_channel_list:
|
||
|
current = nn.Sequential()
|
||
|
current.add_module(
|
||
|
"conv",
|
||
|
nn.Conv2d(
|
||
|
in_channels=dim,
|
||
|
out_channels=d_model,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
self.convs.append(current)
|
||
|
self.fpn_interp_model = fpn_interp_model
|
||
|
assert fuse_type in {"sum", "avg"}
|
||
|
self.fuse_type = fuse_type
|
||
|
|
||
|
# levels to have top-down features in its outputs
|
||
|
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
||
|
# have top-down propagation, while outputs of level 0 and level 1 have only
|
||
|
# lateral features from the same backbone level.
|
||
|
if fpn_top_down_levels is None:
|
||
|
# default is to have top-down features on all levels
|
||
|
fpn_top_down_levels = range(len(self.convs))
|
||
|
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
||
|
|
||
|
def forward(self, xs: List[torch.Tensor]):
|
||
|
"""
|
||
|
Performs forward pass through the Feature Pyramid Network (FPN) neck.
|
||
|
|
||
|
This method processes a list of input tensors from the backbone through the FPN, applying lateral connections
|
||
|
and top-down feature fusion. It generates output feature maps and corresponding positional encodings.
|
||
|
|
||
|
Args:
|
||
|
xs (List[torch.Tensor]): List of input tensors from the backbone, each with shape (B, C, H, W).
|
||
|
|
||
|
Returns:
|
||
|
(Tuple[List[torch.Tensor], List[torch.Tensor]]): A tuple containing:
|
||
|
- out (List[torch.Tensor]): List of output feature maps after FPN processing, each with shape
|
||
|
(B, d_model, H, W).
|
||
|
- pos (List[torch.Tensor]): List of positional encodings corresponding to each output feature map.
|
||
|
|
||
|
Examples:
|
||
|
>>> fpn_neck = FpnNeck(d_model=256, backbone_channel_list=[64, 128, 256, 512])
|
||
|
>>> inputs = [torch.rand(1, c, 32, 32) for c in [64, 128, 256, 512]]
|
||
|
>>> outputs, positions = fpn_neck(inputs)
|
||
|
>>> print(len(outputs), len(positions))
|
||
|
4 4
|
||
|
"""
|
||
|
out = [None] * len(self.convs)
|
||
|
pos = [None] * len(self.convs)
|
||
|
assert len(xs) == len(self.convs)
|
||
|
# fpn forward pass
|
||
|
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
||
|
prev_features = None
|
||
|
# forward in top-down order (from low to high resolution)
|
||
|
n = len(self.convs) - 1
|
||
|
for i in range(n, -1, -1):
|
||
|
x = xs[i]
|
||
|
lateral_features = self.convs[n - i](x)
|
||
|
if i in self.fpn_top_down_levels and prev_features is not None:
|
||
|
top_down_features = F.interpolate(
|
||
|
prev_features.to(dtype=torch.float32),
|
||
|
scale_factor=2.0,
|
||
|
mode=self.fpn_interp_model,
|
||
|
align_corners=(None if self.fpn_interp_model == "nearest" else False),
|
||
|
antialias=False,
|
||
|
)
|
||
|
prev_features = lateral_features + top_down_features
|
||
|
if self.fuse_type == "avg":
|
||
|
prev_features /= 2
|
||
|
else:
|
||
|
prev_features = lateral_features
|
||
|
x_out = prev_features
|
||
|
out[i] = x_out
|
||
|
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
||
|
|
||
|
return out, pos
|
||
|
|
||
|
|
||
|
class Hiera(nn.Module):
|
||
|
"""
|
||
|
Hierarchical vision transformer for efficient multiscale feature extraction in image processing tasks.
|
||
|
|
||
|
This class implements a Hiera model, which is a hierarchical vision transformer architecture designed for
|
||
|
efficient multiscale feature extraction. It uses a series of transformer blocks organized into stages,
|
||
|
with optional pooling and global attention mechanisms.
|
||
|
|
||
|
Attributes:
|
||
|
window_spec (Tuple[int, ...]): Window sizes for each stage.
|
||
|
q_stride (Tuple[int, int]): Downsampling stride between stages.
|
||
|
stage_ends (List[int]): Indices of the last block in each stage.
|
||
|
q_pool_blocks (List[int]): Indices of blocks where pooling is applied.
|
||
|
return_interm_layers (bool): Whether to return intermediate layer outputs.
|
||
|
patch_embed (PatchEmbed): Module for patch embedding.
|
||
|
global_att_blocks (Tuple[int, ...]): Indices of blocks with global attention.
|
||
|
window_pos_embed_bkg_spatial_size (Tuple[int, int]): Spatial size for window positional embedding background.
|
||
|
pos_embed (nn.Parameter): Positional embedding for the background.
|
||
|
pos_embed_window (nn.Parameter): Positional embedding for the window.
|
||
|
blocks (nn.ModuleList): List of MultiScaleBlock modules.
|
||
|
channel_list (List[int]): List of output channel dimensions for each stage.
|
||
|
|
||
|
Methods:
|
||
|
_get_pos_embed: Generates positional embeddings by interpolating and combining window and background embeddings.
|
||
|
forward: Performs the forward pass through the Hiera model.
|
||
|
|
||
|
Examples:
|
||
|
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
|
||
|
>>> input_tensor = torch.randn(1, 3, 224, 224)
|
||
|
>>> output_features = model(input_tensor)
|
||
|
>>> for feat in output_features:
|
||
|
... print(feat.shape)
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int = 96, # initial embed dim
|
||
|
num_heads: int = 1, # initial number of heads
|
||
|
drop_path_rate: float = 0.0, # stochastic depth
|
||
|
q_pool: int = 3, # number of q_pool stages
|
||
|
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
||
|
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
||
|
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
||
|
head_mul: float = 2.0, # head_mul factor at stage shift
|
||
|
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
||
|
# window size per stage, when not using global att.
|
||
|
window_spec: Tuple[int, ...] = (
|
||
|
8,
|
||
|
4,
|
||
|
14,
|
||
|
7,
|
||
|
),
|
||
|
# global attn in these blocks
|
||
|
global_att_blocks: Tuple[int, ...] = (
|
||
|
12,
|
||
|
16,
|
||
|
20,
|
||
|
),
|
||
|
return_interm_layers=True, # return feats from every stage
|
||
|
):
|
||
|
"""Initializes the Hiera model, configuring its hierarchical vision transformer architecture."""
|
||
|
super().__init__()
|
||
|
|
||
|
assert len(stages) == len(window_spec)
|
||
|
self.window_spec = window_spec
|
||
|
|
||
|
depth = sum(stages)
|
||
|
self.q_stride = q_stride
|
||
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
||
|
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
||
|
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
||
|
self.return_interm_layers = return_interm_layers
|
||
|
|
||
|
self.patch_embed = PatchEmbed(
|
||
|
embed_dim=embed_dim,
|
||
|
kernel_size=(7, 7),
|
||
|
stride=(4, 4),
|
||
|
padding=(3, 3),
|
||
|
)
|
||
|
# Which blocks have global att?
|
||
|
self.global_att_blocks = global_att_blocks
|
||
|
|
||
|
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
||
|
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
||
|
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
|
||
|
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
|
||
|
|
||
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||
|
|
||
|
cur_stage = 1
|
||
|
self.blocks = nn.ModuleList()
|
||
|
|
||
|
for i in range(depth):
|
||
|
dim_out = embed_dim
|
||
|
# lags by a block, so first block of
|
||
|
# next stage uses an initial window size
|
||
|
# of previous stage and final window size of current stage
|
||
|
window_size = self.window_spec[cur_stage - 1]
|
||
|
|
||
|
if self.global_att_blocks is not None:
|
||
|
window_size = 0 if i in self.global_att_blocks else window_size
|
||
|
|
||
|
if i - 1 in self.stage_ends:
|
||
|
dim_out = int(embed_dim * dim_mul)
|
||
|
num_heads = int(num_heads * head_mul)
|
||
|
cur_stage += 1
|
||
|
|
||
|
block = MultiScaleBlock(
|
||
|
dim=embed_dim,
|
||
|
dim_out=dim_out,
|
||
|
num_heads=num_heads,
|
||
|
drop_path=dpr[i],
|
||
|
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
||
|
window_size=window_size,
|
||
|
)
|
||
|
|
||
|
embed_dim = dim_out
|
||
|
self.blocks.append(block)
|
||
|
|
||
|
self.channel_list = (
|
||
|
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
||
|
if return_interm_layers
|
||
|
else [self.blocks[-1].dim_out]
|
||
|
)
|
||
|
|
||
|
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
||
|
"""Generates positional embeddings by interpolating and combining window and background embeddings."""
|
||
|
h, w = hw
|
||
|
window_embed = self.pos_embed_window
|
||
|
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
||
|
pos_embed = pos_embed + window_embed.tile([x // y for x, y in zip(pos_embed.shape, window_embed.shape)])
|
||
|
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
||
|
return pos_embed
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||
|
"""Performs forward pass through Hiera model, extracting multiscale features from input images."""
|
||
|
x = self.patch_embed(x)
|
||
|
# x: (B, H, W, C)
|
||
|
|
||
|
# Add pos embed
|
||
|
x = x + self._get_pos_embed(x.shape[1:3])
|
||
|
|
||
|
outputs = []
|
||
|
for i, blk in enumerate(self.blocks):
|
||
|
x = blk(x)
|
||
|
if (i == self.stage_ends[-1]) or (i in self.stage_ends and self.return_interm_layers):
|
||
|
feats = x.permute(0, 3, 1, 2)
|
||
|
outputs.append(feats)
|
||
|
|
||
|
return outputs
|